login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208065
Number of n X 4 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 1 vertically.
1
10, 100, 240, 576, 1008, 1764, 2688, 4096, 5760, 8100, 10800, 14400, 18480, 23716, 29568, 36864, 44928, 54756, 65520, 78400, 92400, 108900, 126720, 147456, 169728, 195364, 222768, 254016, 287280, 324900, 364800, 409600, 456960, 509796, 565488
OFFSET
1,1
COMMENTS
Column 4 of A208069.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>9.
Conjectures from Colin Barker, Jun 27 2018: (Start)
G.f.: 2*x*(5 + 40*x + 10*x^2 - 22*x^3 - 12*x^4 - 12*x^5 + 10*x^6 + 10*x^7 - 5*x^8) / ((1 - x)^5*(1 + x)^3).
a(n) = n^2*(n + 8)^2/4 for n>1 and even.
a(n) = (n - 1)*(n + 1)*(n + 7)*(n + 9)/4 for n>1 and odd.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..0....1..1..0..1....0..1..0..0....0..0..1..0....1..1..0..1
..1..1..0..1....0..0..1..0....0..0..1..0....1..1..0..0....1..1..0..1
..0..1..0..0....0..1..0..1....0..1..0..0....0..0..1..0....1..1..0..1
..1..0..0..1....0..0..1..0....0..0..1..0....1..1..0..0....1..0..0..1
CROSSREFS
Cf. A208069.
Sequence in context: A119052 A029774 A208375 * A207930 A207847 A095920
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 23 2012
STATUS
approved