

A207669


Numbers that match polynomials irreducible (mod 3), with coefficients in {0,1,2}.


5



3, 4, 5, 6, 7, 8, 10, 14, 17, 20, 22, 25, 34, 35, 38, 41, 43, 46, 49, 53, 58, 59, 65, 67, 71, 73, 77, 79, 86, 89, 92, 94, 97, 101, 110, 115, 118, 121, 125, 134, 137, 139, 145, 149, 151, 158, 166, 169, 172, 181, 185, 188, 190, 197, 205, 209, 212, 214, 217
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For such polynomials irreducible over the field of rational numbers, see A207966, which also describes the enumeration of all the nonzero polynomials whose coefficients are all in {0,1,2}.


LINKS



EXAMPLE

Polynomials having coefficients in {0,1,2} are
enumerated by the positive integers as follows:
n ... p[n,x] .. irreducible (mod 3)
1 ... 1 ....... no
2 ... 2 ....... no
3 ... x ....... yes
4 ... x+1 ..... yes
5 ... x+2 ..... yes
6 ... 2x ...... yes
7 ... 2x+1 .... yes
8 ... 2x+2 .... yes
9 ... x^2 ..... no
10 .. x^2+1 ... yes
11 .. x^2+2 ... no
The least n for which p(n,x) is irreducible over the
rationals but not modulo 3 is 13; the factorization of
p(13,x) is (x+1)(x+2) (mod 3).


MATHEMATICA

t = Table[IntegerDigits[n, 3], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_, x_] := t[[n]].b[1 + Length[t[[n]]]]
Table[p[n, x], {n, 1, 15}]
u = {}; Do[n++;
If[IrreduciblePolynomialQ[p[n, x], Modulus > 3],
AppendTo[u, n]], {n, 1, 400}]
Complement[Range[200], %] (* A207670 *)
b[n_] := FromDigits[IntegerDigits[u, 3][[n]]]
Table[b[n], {n, 1, 50}] (* A207671 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



