login
A207632
Triangle of coefficients of polynomials v(n,x) jointly generated with A207631; see Formula section.
3
1, 2, 2, 3, 4, 2, 5, 9, 6, 2, 8, 18, 17, 8, 2, 13, 35, 41, 27, 10, 2, 21, 66, 93, 76, 39, 12, 2, 34, 122, 200, 196, 125, 53, 14, 2, 55, 222, 415, 472, 360, 190, 69, 16, 2, 89, 399, 837, 1083, 957, 603, 273, 87, 18, 2, 144, 710, 1651, 2392, 2400, 1750, 945, 376
OFFSET
1,2
COMMENTS
Column 1: Fibonacci numbers, A000045.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...2
3...4....2
5...9....6....2
8...18...17...8...2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207631 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207632 *)
CROSSREFS
Cf. A207631.
Sequence in context: A367467 A333937 A325785 * A175503 A333389 A352286
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 23 2012
STATUS
approved