OFFSET
2,2
COMMENTS
Counts certain consecutive Farey fractions of order n; not the same as A207525, which counts p/q<=(greatest quotient of consecutive Fibonacci numbers having denominator <= n).
EXAMPLE
a(4)=4 counts 1/4, 1/3, 1/2, 2/3.
a(5)=6 counts 1/5, 1/4, 1/3, 2/5, 1/2, 3/5.
MATHEMATICA
r[n_] := Union[Flatten[Table[p/q, {q, 2, n - 1},
{p, 1, q - 1}]]];
f[n_] := Fibonacci[n]; gr = GoldenRatio;
g[n_] := Floor[Log[gr, 1 + n*Sqrt[5]]];
s = Table[Round[f[g[n - 1]]/gr]/f[g[n - 1]], {n, 3, 82}];
c[n_, x_] := Length[Select[r[n + 2], # <= x &]]
Table[c[n, s[[n]]], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 18 2012
STATUS
approved