OFFSET
1,3
FORMULA
a(n)=sum((m=0..(n-1)/2, v(n-2*m)*sum(i=0..(n-2*m)/2, (2*i+2*m-n)^n*binomial(n-2*m,i)*(-1)^(n+m-i)))/(2^(n-2*m-1)*(n-2*m)!)), v(n)=A000311(n).
a(n) ~ ((1-log(2))*log(2))^(1/4) * n^(n-1) / ((arcsin(2*log(2)-1))^(n-1/2) * exp(n)). - Vaclav Kotesovec, Aug 04 2014
MATHEMATICA
Rest[CoefficientList[Series[(-1 - 2*LambertW[-E^((Sin[x]-1)/2)/2] + Sin[x])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Aug 04 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 17 2012
STATUS
approved