login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207294
Primes p whose digit sum s(p) and iterated digit sum s(s(p)) are also prime.
5
2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 83, 101, 113, 131, 137, 151, 173, 191, 223, 227, 241, 263, 281, 311, 313, 317, 331, 353, 401, 421, 443, 461, 599, 601, 641, 797, 821, 887, 911, 977, 1013, 1019, 1031, 1033, 1051, 1091, 1103, 1109, 1123, 1163, 1181, 1213, 1217
OFFSET
1,1
COMMENTS
Sum_{a(n) < x} 1/a(n) is asymptotic to (9/4)*log(log(log(log(x)))) as x -> infinity; see Harman (2012). Thus the sequence is infinite.
The first member not in A070027 is 59899999.
A046704 is primes p with s(p) also prime. A070027 is primes p with all s(p), s(s(p)), s(s(s(p))), ... also prime. A104213 is primes p with s(p) not prime. A207293 is primes p with s(p) also prime, but not s(s(p)). A213354 is primes p with s(p) and s(s(p)) also prime, but not s(s(s(p))). A213355 is smallest prime p whose k-fold digit sum s(s(..s(p)).)..)) is also prime for all k < n, but not for k = n.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.
EXAMPLE
59899999 and s(59899999) = 5+9+8+9+9+9+9+9 = 67 and s(s(59899999)) = s(67) = 6+7 = 13 are all primes, so 59899999 is a member. But s(s(s(59899999))) = s(13) = 1+3 = 4 is not prime, so 59899999 is not a member of A070027.
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[Apply[Plus, IntegerDigits[#]]] && PrimeQ[Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[#]]]]] &]
PROG
(PARI) select(p->my(s=sumdigits(p)); isprime(s)&&isprime(sumdigits(s)), primes(1000)) \\ Charles R Greathouse IV, Jun 10 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jonathan Sondow, Jun 09 2012
STATUS
approved