OFFSET
1,1
COMMENTS
Sum_{a(n) < x} 1/a(n) is asymptotic to (9/4)*log(log(log(log(x)))) as x -> infinity; see Harman (2012). Thus the sequence is infinite.
The first member not in A070027 is 59899999.
A046704 is primes p with s(p) also prime. A070027 is primes p with all s(p), s(s(p)), s(s(s(p))), ... also prime. A104213 is primes p with s(p) not prime. A207293 is primes p with s(p) also prime, but not s(s(p)). A213354 is primes p with s(p) and s(s(p)) also prime, but not s(s(s(p))). A213355 is smallest prime p whose k-fold digit sum s(s(..s(p)).)..)) is also prime for all k < n, but not for k = n.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.
EXAMPLE
59899999 and s(59899999) = 5+9+8+9+9+9+9+9 = 67 and s(s(59899999)) = s(67) = 6+7 = 13 are all primes, so 59899999 is a member. But s(s(s(59899999))) = s(13) = 1+3 = 4 is not prime, so 59899999 is not a member of A070027.
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[Apply[Plus, IntegerDigits[#]]] && PrimeQ[Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[#]]]]] &]
PROG
(PARI) select(p->my(s=sumdigits(p)); isprime(s)&&isprime(sumdigits(s)), primes(1000)) \\ Charles R Greathouse IV, Jun 10 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jonathan Sondow, Jun 09 2012
STATUS
approved