Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:37:09
%S 256,2184,2184,19832,21140,19832,170688,167960,167960,170688,1499080,
%T 1390488,1278672,1390488,1499080,13136860,11638960,11155584,11155584,
%U 11638960,13136860,114770680,96831504,101369476,111242648,101369476
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two clockwise edge increases
%C Table starts
%C ........256.......2184.......19832........170688........1499080
%C .......2184......21140......167960.......1390488.......11638960
%C ......19832.....167960.....1278672......11155584......101369476
%C .....170688....1390488....11155584.....111242648.....1198231144
%C ....1499080...11638960...101369476....1198231144....18209383140
%C ...13136860...96831504...910785080...12877680064...265284773176
%C ..114770680..805817696..8150091296..144759802024..4049733446192
%C .1005245456.6714115792.73102971728.1569116858248.62573461436920
%H R. H. Hardin, <a href="/A206063/b206063.txt">Table of n, a(n) for n = 1..263</a>
%F Empirical for column k:
%F k=1: a(n) = 3*a(n-1) +34*a(n-2) +145*a(n-3) -18*a(n-4) -2*a(n-5) +11*a(n-6) +6*a(n-7) +2*a(n-8) +4*a(n-9) for n>10
%F k=2: a(n) = 3*a(n-1) +20*a(n-2) +189*a(n-3) +102*a(n-4) +187*a(n-5) -612*a(n-6) -110*a(n-7) +186*a(n-8) +82*a(n-9) +43*a(n-10) -5*a(n-11) -16*a(n-12) for n>17
%F k=3: a(n) = a(n-2) +695*a(n-3) +2*a(n-4) +1693*a(n-5) -1278*a(n-7) +682*a(n-9) +286*a(n-11) +32*a(n-13) for n>20
%F k=4: a(n) = 1307*a(n-3) +24*a(n-4) +677*a(n-5) +44*a(n-6) +256*a(n-7) for n>16
%F k=5: a(n) = 3457*a(n-3) +526*a(n-5) for n>14
%F k=6: a(n) = 9491*a(n-3) +213*a(n-5) for n>15
%F k=7: a(n) = 26761*a(n-3) +573*a(n-5) for n>16
%e Some solutions for n=4 k=3
%e ..1..3..2..3....1..1..1..1....1..2..2..3....3..0..1..1....1..0..1..3
%e ..2..0..1..1....1..3..2..0....3..3..0..1....3..1..1..3....1..0..0..1
%e ..3..3..1..1....0..0..1..3....3..3..1..1....1..1..2..0....2..1..0..0
%e ..0..3..3..2....0..0..2..3....2..1..1..0....2..3..3..0....2..0..3..3
%e ..2..0..3..0....2..1..1..1....3..1..2..1....0..3..3..1....2..1..3..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Feb 03 2012