login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206063
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two clockwise edge increases
9
256, 2184, 2184, 19832, 21140, 19832, 170688, 167960, 167960, 170688, 1499080, 1390488, 1278672, 1390488, 1499080, 13136860, 11638960, 11155584, 11155584, 11638960, 13136860, 114770680, 96831504, 101369476, 111242648, 101369476
OFFSET
1,1
COMMENTS
Table starts
........256.......2184.......19832........170688........1499080
.......2184......21140......167960.......1390488.......11638960
......19832.....167960.....1278672......11155584......101369476
.....170688....1390488....11155584.....111242648.....1198231144
....1499080...11638960...101369476....1198231144....18209383140
...13136860...96831504...910785080...12877680064...265284773176
..114770680..805817696..8150091296..144759802024..4049733446192
.1005245456.6714115792.73102971728.1569116858248.62573461436920
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +34*a(n-2) +145*a(n-3) -18*a(n-4) -2*a(n-5) +11*a(n-6) +6*a(n-7) +2*a(n-8) +4*a(n-9) for n>10
k=2: a(n) = 3*a(n-1) +20*a(n-2) +189*a(n-3) +102*a(n-4) +187*a(n-5) -612*a(n-6) -110*a(n-7) +186*a(n-8) +82*a(n-9) +43*a(n-10) -5*a(n-11) -16*a(n-12) for n>17
k=3: a(n) = a(n-2) +695*a(n-3) +2*a(n-4) +1693*a(n-5) -1278*a(n-7) +682*a(n-9) +286*a(n-11) +32*a(n-13) for n>20
k=4: a(n) = 1307*a(n-3) +24*a(n-4) +677*a(n-5) +44*a(n-6) +256*a(n-7) for n>16
k=5: a(n) = 3457*a(n-3) +526*a(n-5) for n>14
k=6: a(n) = 9491*a(n-3) +213*a(n-5) for n>15
k=7: a(n) = 26761*a(n-3) +573*a(n-5) for n>16
EXAMPLE
Some solutions for n=4 k=3
..1..3..2..3....1..1..1..1....1..2..2..3....3..0..1..1....1..0..1..3
..2..0..1..1....1..3..2..0....3..3..0..1....3..1..1..3....1..0..0..1
..3..3..1..1....0..0..1..3....3..3..1..1....1..1..2..0....2..1..0..0
..0..3..3..2....0..0..2..3....2..1..1..0....2..3..3..0....2..0..3..3
..2..0..3..0....2..1..1..1....3..1..2..1....0..3..3..1....2..1..3..0
CROSSREFS
Sequence in context: A237076 A237069 A346961 * A206056 A207799 A207792
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 03 2012
STATUS
approved