login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.
6

%I #17 Jul 18 2018 03:02:05

%S 1,12,36,24,252,360,288,1248,3780,408,11880,12816,12096,39144,108576,

%T 43920,367164,344952,93024,1003440,3409560,1050816,7651152,8253216,

%U 8346240,27909300,61182072,2357016,213568992,185122440,179720640,516967296,1646801604,507539232

%N a(n) = Fibonacci(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

%C Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).

%C Here Chi(n,3) = principal Dirichlet character of n modulo 3.

%H G. C. Greubel, <a href="/A205967/b205967.txt">Table of n, a(n) for n = 0..2500</a>

%F G.f.: 1 + 12*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

%e G.f.: A(x) = 1 + 12*x + 36*x^2 + 24*x^3 + 252*x^4 + 360*x^5 + 288*x^6 +...

%e where A(x) = 1 + 1*12*x + 1*36*x^2 + 2*12*x^3 + 3*84*x^4 + 5*72*x^5 + 8*36*x^6 +...+ Fibonacci(n)*A008653(n)*x^n +...

%e The g.f. is also given by the identity:

%e A(x) = 1 + 12*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 13*7*x^7/(1-29*x^7-x^14) + 21*8*x^8/(1-47*x^8-x^16) +...).

%e The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].

%t terms = 34; s = 1 + 12*Sum[Fibonacci[n]*KroneckerSymbol[n, 3]^2*n*(x^n/(1 - LucasL[n]*x^n + (-1)^n*x^(2*n))), {n, 1, terms}] + O[x]^terms; CoefficientList[s, x] (* _Jean-François Alcover_, Jul 05 2017 *)

%t b[n_] := If[n < 1, Boole[n == 0], 12 Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Table[If[n == 0, 1, b[n]*Fibonacci[n]], {n, 0, 50}] (* _G. C. Greubel_, Jul 17 2018 *)

%o (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o {a(n)=polcoeff(1 + 12*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}

%o for(n=0,50,print1(a(n),", "))

%Y Cf. A008653, A205966, A205968, A203847, A000204 (Lucas).

%Y Cf. A209447 (Pell variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 04 2012