login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205797
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^4 * x^n/n ).
4
1, 1, 41, 126, 1526, 5185, 46920, 176865, 1254608, 4986548, 30563031, 123868761, 683127011, 2793828323, 14223836013, 58127497582, 278433541834, 1130954381904, 5159127957638, 20767403083249, 91032595281699, 362455763000997, 1536849042738162
OFFSET
0,3
COMMENTS
Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(k)^4*a(n-k) for n>0, with a(0) = 1.
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k)^3 * x^(n*k) / n ).
From Vaclav Kotesovec, Oct 30 2024: (Start)
log(a(n)) ~ 5^(4/5) * c^(1/5) * Pi^(6/5) * zeta(3)^(1/5) * zeta(5)^(1/5) * n^(4/5) / (2^(9/5) * 3^(2/5)), where c = Product_{primes p} (1 + 3/p^2 + 5/p^3 + 3/p^4 + 3/p^5 + 5/p^6 + 3/p^7 + 1/p^9) = 6.04468280906514379869287397833397910321972833863778...
Equivalently, log(a(n)) ~ 3.967005157823944635858584839447899089435134... * n^(4/5). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 5185*x^5 +...
such that, by definition,
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 6^4*x^5/5 + 12^4*x^6/6 +...
MATHEMATICA
nmax = 30; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^4 * a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 30 2024 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^4*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)^3*x^(m*k)/m)+x*O(x^n))), n)} /* Paul D. Hanna */
(PARI) a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^4*a(n-k)))
CROSSREFS
Cf. A156302, A178933, A000203 (sigma), A000041 (partitions), A361179.
Sequence in context: A232100 A195038 A067896 * A203804 A142290 A013643
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2012
STATUS
approved