login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205671
E.g.f. A(x) = Sum_{n>0} a(n)*x^n/n! is the inverse function to exp(2*x)-x-1.
0
1, -4, 40, -656, 15008, -440896, 15821440, -670763264, 32806349312, -1818238034944, 112618994575360, -7709249275990016, 577965256979161088, -47096523207273496576, 4144654003816138178560, -391753493233853247586304
OFFSET
1,2
FORMULA
a(n) = sum(k=1..n-1, (n+k-1)!*sum(j=1,k, (-1)^j/(k-j)!*sum(i=0..j, (-1)^i* 2^(n-i+j-1)*stirling2(n-i+j-1,j-i)/((n-i+j-1)!*i!)))), n>1, a(1)=1.
a(n) ~ (-1)^(n+1) * 2^(n-1) * n^(n-1) / (exp(n) * (1-log(2))^(n-1/2)). - Vaclav Kotesovec, Jan 26 2014
a(n) = 2*(1-n)*a(n-1) - Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1, a(1)=1. - Peter Luschny, May 24 2017
MAPLE
A205671_list := proc(len) local A, n; A[1] := 1; for n from 2 to len do
A[n] := 2*(1-n)*A[n-1] - add(binomial(n, j)*A[j]*A[n-j], j=1..n-1) od:
convert(A, list) end: A205671_list(16); # Peter Luschny, May 24 2017
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[-1 + E^(2*x) - x, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 26 2014 *)
PROG
(Maxima) a(n):=if n=1 then 1 else (sum((n+k-1)!*sum((-1)^j/(k-j)!*sum((-1)^i*2^(n-i+j-1)*stirling2(n-i+j-1, j-i)/((n-i+j-1)!*i!), i, 0, j), j, 1, k), k, 1, n-1));
(PARI)
x='x+O('x^66); /* that many terms */
v=Vec(serlaplace(serreverse(exp(2*x)-x-1)))
CROSSREFS
Sequence in context: A049308 A227055 A343446 * A234294 A181088 A005431
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jan 30 2012
STATUS
approved