login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205522
Primes resulting from adding x and y from the least positive solution to Pell's equation (x^2 - d*y^2 == 1), with d squarefree.
0
5, 3, 13, 7, 11, 13, 829, 19, 5, 41, 67, 239, 29, 61, 11621, 13, 41, 7, 43, 29, 4013, 101, 599, 71, 73, 281, 4129, 59, 89, 181, 11527, 31, 13411, 43, 249947, 23, 1231, 335171, 131, 7069, 103, 13, 313, 157, 23011, 269, 1429, 12703, 1163, 1832918207, 181, 1721
OFFSET
1,1
REFERENCES
Daniel Zwillinger, CRC Standard Mathematical Tables and Formulae (31st ed. 2003), p. 99
EXAMPLE
The least positive solution to Pell's equation with d = 5 is (x = 9 and y = 4). 9 + 4 = 13, which is a prime number, so 13 is in the sequence.
CROSSREFS
Sequence in context: A104587 A300940 A131939 * A111744 A083781 A349156
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Jan 28 2012
STATUS
approved