The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205507 a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares. 5

%I

%S 1,4,4,0,12,40,0,0,84,136,440,0,0,1864,0,0,3948,12776,10336,0,54120,0,

%T 0,0,0,900300,971144,0,0,4113832,0,0,8713236,0,45623096,0,59721408,

%U 193262536,0,0,818673240,1324641128,0,0,0,9079225360,0,0,0,31114968196

%N a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

%C Compare to the g.f. of A004018 given by the Lambert series identity:

%C 1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

%H G. C. Greubel, <a href="/A205507/b205507.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Fibonacci(2*n+1)*x^(2*n+1) / (1 - Lucas(2*n+1)*x^(2*n+1) - x^(4*n+2)), where Lucas(n) = A000204(n).

%e G.f.: A(x) = 1 + 4*x + 4*x^2 + 12*x^4 + 40*x^5 + 84*x^8 + 136*x^9 + 440*x^10 +...

%e Compare the g.f to the square of the Jacobi theta_3 series:

%e theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...

%e The g.f. equals the sum:

%e A(x) = 1 + 4*x/(1-x-x^2) - 4*2*x^3/(1-4*x^3-x^6) + 4*5*x^5/(1-11*x^5-x^10) - 4*13*x^7/(1-29*x^7-x^14) + 4*34*x^9/(1-76*x^9-x^18) - 4*89*x^11/(1-199*x^11-x^22) + 4*233*x^13/(1-521*x^13-x^26) - 4*610*x^15/(1-1364*x^15-x^30) +...

%e which involves odd-indexed Fibonacci and Lucas numbers.

%t Join[{1}, Table[Fibonacci[n]*SquaresR[2, n], {n,1,50}]] (* _G. C. Greubel_, Mar 05 2017 *)

%o (PARI) {A004018(n)=polcoeff((1+2*sum(k=1,sqrtint(n+1),x^(k^2),x*O(x^n)))^2,n)}

%o {a(n)=if(n==0,1,fibonacci(n)*A004018(n))}

%o (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*fibonacci(2*m+1)*x^(2*m+1)/(1-Lucas(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n)))),n)}

%Y Cf. A205508, A204060, A203847, A004018, A000204 (Lucas).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 28 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 13:27 EDT 2020. Contains 336504 sequences. (Running on oeis4.)