The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205394 Least k such that n divides s(k)-s(j) for some j
 2, 3, 3, 3, 5, 4, 4, 5, 8, 6, 5, 5, 6, 8, 8, 6, 6, 9, 8, 7, 10, 12, 7, 7, 10, 14, 8, 9, 11, 8, 8, 10, 9, 18, 12, 9, 10, 20, 9, 9, 15, 10, 11, 13, 10, 24, 12, 10, 10, 15, 20, 15, 11, 12, 16, 11, 14, 30, 11, 11, 22, 32, 15, 12, 18, 14, 12, 19, 26, 12, 12, 13, 14, 38, 20, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A204892 for a discussion and guide to related sequences. LINKS Table of n, a(n) for n=1..76. MATHEMATICA s[n_] := s[n] = Floor[(n^2 + 1)/2]; z1 = 800; z2 = 80; Table[s[n], {n, 1, 30}] (* A000982 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A205392 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}] (* A205393 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205394 *) Table[j[n], {n, 1, z2}] (* A205395 *) Table[s[k[n]], {n, 1, z2}] (* A205396 *) Table[s[j[n]], {n, 1, z2}] (* A205397 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205398 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205399 *) CROSSREFS Cf. A000982, A204892, A205399. Sequence in context: A076559 A102601 A092308 * A213617 A205778 A328972 Adjacent sequences: A205391 A205392 A205393 * A205395 A205396 A205397 KEYWORD nonn AUTHOR Clark Kimberling, Jan 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 00:49 EST 2024. Contains 370288 sequences. (Running on oeis4.)