login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205248
Number of (n+1) X 2 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.
1
16, 40, 112, 328, 976, 2920, 8752, 26248, 78736, 236200, 708592, 2125768, 6377296, 19131880, 57395632, 172186888, 516560656, 1549681960, 4649045872, 13947137608, 41841412816, 125524238440, 376572715312, 1129718145928, 3389154437776
OFFSET
1,1
COMMENTS
Also, the number of cliques in the n-Apollonian network. Cliques in this graph have a maximum size of 4. - Andrew Howroyd, Sep 02 2017
LINKS
Eric Weisstein's World of Mathematics, Apollonian Network
Eric Weisstein's World of Mathematics, Clique
FORMULA
a(n) = 4*a(n-1) - 3*a(n-2).
From Andrew Howroyd, Sep 02 2017: (Start)
a(n) = 4*(3^n + 1).
G.f.: 8*x*(2 - 3*x)/((1 - x)*(1 - 3*x)).
a(n) = 8*A007051(n).
a(n) = 1 + A289521(n) + A067771(n) + A003462(n+1) + A003462(n).
(End)
EXAMPLE
Some solutions for n=4:
1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1
0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1
1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 1
0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1
1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1
MATHEMATICA
Table[4*(3^n + 1), {n, 1, 25}] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
4 (3^Range[30] + 1) (* Eric W. Weisstein, Nov 29 2017 *)
LinearRecurrence[{4, -3}, {16, 40}, 30] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[-8 (-2 + 3 x)/(1 - 4 x + 3 x^2), {x, 0, 30}], x] (* Eric W. Weisstein, Nov 29 2017 *)
PROG
(PARI) Vec(8*(2 - 3*x)/((1 - x)*(1 - 3*x)) + O(x^40)) \\ Andrew Howroyd, Sep 02 2017
CROSSREFS
Column 1 of A205255.
Sequence in context: A368078 A185790 A185761 * A205186 A197903 A300901
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Jan 24 2012
STATUS
approved