login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205114
Least k such that n divides L(k)-L(j) for some j satisfying 1<=j<k, where L(j) is the j-th Lucas number (A000032).
9
2, 2, 3, 4, 5, 4, 5, 5, 7, 5, 6, 8, 7, 6, 6, 10, 6, 7, 10, 8, 10, 7, 8, 9, 7, 7, 16, 7, 8, 10, 16, 11, 11, 11, 10, 8, 13, 10, 11, 8, 11, 14, 8, 8, 12, 8, 9, 11, 11, 16, 13, 13, 12, 16, 12, 10, 17, 9, 14, 10
OFFSET
1,1
COMMENTS
See A204892 for a discussion and guide to related sequences.
MATHEMATICA
s[n_] := s[n] = LucasL[n]; z1 = 500; z2 = 60;
Table[s[n], {n, 1, 30}] (* A000032 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A205112 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
Table[d[n], {n, 1, z2}] (* A205113 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205114 *)
Table[j[n], {n, 1, z2}] (* A205115 *)
Table[s[k[n]], {n, 1, z2}] (* A205116 *)
Table[s[j[n]], {n, 1, z2}] (* A205117 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205118 *)
Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205119 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2012
STATUS
approved