login
A204897
a(n) = (p(n)-q(n))/n, where (p(n), q(n)) is the least pair of primes for which n divides p(n)-q(n).
4
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1
OFFSET
1,7
COMMENTS
For a guide to related sequences, see A204892.
It seems that a(A007921(n)) = 2 for all n. - Antti Karttunen, Oct 09 2018
LINKS
EXAMPLE
(3-2)/1=1
(5-3)/2=1
(5-2)/3=1
(7-3)/4=1
(7-2)/5=1
(11-5)/6=1
(17-3)/7=2
MATHEMATICA
(See the program at A204892.)
PROG
(PARI) A204897(n) = { my(d); forprime(p=3, oo, forprime(q=2, p-1, if(!((d=(p-q))%n), return(d/n), if(d<n, break)))); }; \\ Antti Karttunen, Oct 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 20 2012
EXTENSIONS
More terms from Antti Karttunen, Oct 09 2018
STATUS
approved