login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204853
Expansion of (3 * phi(-x^36) - phi(-x^4)) / 2 - x * f(-x^24) in powers of x where phi(), f() are Ramanujan theta functions.
3
1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
OFFSET
0,37
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x^36) - x * f(-x^24) + x^4 * f(-x^12, -x^60) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of f(-x^9, x^9) - x * f(-x^3, x^15) in powers of x where f() is the two variable Ramanujan theta function.
Euler transform of period 24 sequence [ -1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, ...].
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 3) = a(6*n + 3) = a(8*n + 5) = 0. a(4*n) = A089810(n). a(24*n + 1) = - A010815(n). a(25*n) = a(49*n) = A204843(n). a(n) = (-1)^n * A204843(n).
EXAMPLE
1 - x + x^4 - x^16 + x^25 - 2*x^36 + x^49 - x^64 + x^100 - x^121 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(3*EllipticTheta[3, 0, -q^36] -EllipticTheta[3, 0, -q^4])/2 - q*QPochhammer[q^24, q^72]*QPochhammer[q^48, q^72]* QPochhammer[q^72, q^72], {q, 0, n}]; Table[a[n], {n, 0, 100}] (* G. C. Greubel, Dec 19 2017 *)
PROG
(PARI) {a(n) = local(m); if( n<1, n==0, if( issquare( n, &m), (-1)^(m\6) * [ 2, -1, 1, 0, -1, 1][m%6 + 1]))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jan 20 2012
STATUS
approved