login
A204232
Numbers whose binary reversal is prime.
4
3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 37, 40, 41, 43, 44, 46, 47, 48, 50, 52, 53, 55, 56, 58, 61, 62, 67, 68, 71, 73, 74, 77, 80, 82, 83, 86, 88, 91, 92, 94, 96, 97, 100, 101, 104, 106, 107, 110, 112, 113, 115, 116, 121
OFFSET
1,1
COMMENTS
Base-2 analog of A095179.
If k is a term, then 2*k is a term too. - Michel Marcus, Apr 19 2020
LINKS
EXAMPLE
3, 5 and 7 are in the sequence because their binary reversal, equal to themselves, is prime.
a(3)=6 is in the sequence, because 6=110[2] (written in base 2), whose reversal 011[2]=3 is prime.
a(5)=11 is in the sequence, because 11=1011[2] (written in base 2), whose reversal 1101[2]=13 is prime.
MATHEMATICA
Select[Range[170], PrimeQ[FromDigits[Reverse[IntegerDigits[#, 2]], 2]] &] (* Alonso del Arte, Jan 13 2012 *)
PROG
(PARI) for(n=1, 1e2, isprime((t=binary(n))*vector(#t, i, 1<<i)~\2) & print1(n", "))
(Python)
from sympy import isprime
def ok(n): return isprime(int(bin(n)[2:][::-1], 2))
print(list(filter(ok, range(1, 122)))) # Michael S. Branicky, Sep 06 2021
(Python) # alternate program constructing terms directly from primes
from sympy import isprime, primerange
def auptobits(maxbits):
alst = []
for p in primerange(3, 1<<maxbits):
b = bin(p)[2:]; br = b[::-1]; t = int(br, 2)
alst.extend(t<<i for i in range(maxbits-len(br)+1))
return sorted(alst)
print(auptobits(7)) # Michael S. Branicky, Oct 29 2024
CROSSREFS
Positions of 2's in A227864.
Sequence in context: A352826 A335657 A038550 * A028730 A028747 A136806
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Jan 13 2012
STATUS
approved