login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of ceiling((i+j)/2), as in A204166.
3

%I #20 Nov 30 2021 03:48:21

%S 1,-1,-2,-3,1,1,6,6,-1,0,-4,-16,-10,1,0,0,15,32,15,-1,0,0,0,-36,-60,

%T -21,1,0,0,0,0,84,100,28,-1,0,0,0,0,0,-160,-160,-36,1,0,0,0,0,0,0,300,

%U 240,45,-1,0,0,0,0,0,0,0,-500,-350

%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of ceiling((i+j)/2), as in A204166.

%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

%D (For references regarding interlacing roots, see A202605.)

%e Top of the array:

%e 1, -1

%e -2, -3, 1

%e 1, 6, 6, -1

%e 0, -4, -16, -10, 1

%t f[i_, j_] := Ceiling[(i + j)/2];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8 X 8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 15}, {i, 1, n}]] (* A204166 *)

%t p[n_] := CharacteristicPolynomial[m[n], x];

%t c[n_] := CoefficientList[p[n], x]

%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

%t Table[c[n], {n, 1, 12}]

%t Flatten[%] (* A204167 *)

%t TableForm[Table[c[n], {n, 1, 10}]]

%Y Cf. A204166, A202605, A204016.

%K tabf,sign

%O 1,3

%A _Clark Kimberling_, Jan 12 2012

%E Definition corrected by _Georg Fischer_, Nov 29 2021