|
|
A204143
|
|
Symmetric matrix based on f(i,j)=max(ceiling(i/j),ceiling(j/i)), by antidiagonals.
|
|
3
|
|
|
1, 2, 2, 3, 1, 3, 4, 2, 2, 4, 5, 2, 1, 2, 5, 6, 3, 2, 2, 3, 6, 7, 3, 2, 1, 2, 3, 7, 8, 4, 2, 2, 2, 2, 4, 8, 9, 4, 3, 2, 1, 2, 3, 4, 9, 10, 5, 3, 2, 2, 2, 2, 3, 5, 10, 11, 5, 3, 2, 2, 1, 2, 2, 3, 5, 11, 12, 6, 4, 3, 2, 2, 2, 2, 3, 4, 6, 12, 13, 6, 4, 3, 2, 2, 1, 2, 2, 3, 4, 6, 13, 14, 7, 4, 3
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A204143 represents the matrix M given by f(i,j)=max(ceiling(i/j),ceiling(j/i)) for i>=1 and j>=1. See A204144 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
|
|
LINKS
|
|
|
EXAMPLE
|
Northwest corner:
1 2 3 4 5 6
2 1 2 2 3 3
3 2 1 2 2 2
4 2 2 1 2 2
5 3 2 2 1 2
6 3 2 2 2 1
|
|
MATHEMATICA
|
f[i_, j_] := Max[Ceiling[i/j], Ceiling[j/i]];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204143 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
TableForm[Table[c[n], {n, 1, 10}]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|