login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204125 Symmetric matrix based on f(i,j)=(i if i=j and 1 otherwise), by antidiagonals. 4
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

A204125 represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1.  See A204126 for characteristic polynomials of principal submatrices of M, with interlacing zeros.  See A204016 for a guide to other choices of M.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

Northwest corner:

1 1 1 1 1 1

1 2 1 1 1 1

1 1 3 1 1 1

1 1 1 4 1 1

1 1 1 1 5 1

1 1 1 1 1 6

MATHEMATICA

f[i_, j_] := 1; f[i_, i_] := i;

m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

TableForm[m[8]] (* 8x8 principal submatrix *)

Flatten[Table[f[i, n + 1 - i],

  {n, 1, 15}, {i, 1, n}]]  (* A204125 *)

p[n_] := CharacteristicPolynomial[m[n], x];

c[n_] := CoefficientList[p[n], x]

TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

Table[c[n], {n, 1, 12}]

Flatten[%]                 (* A204126 *)

TableForm[Table[c[n], {n, 1, 10}]]

CROSSREFS

Cf. A204126, A204016, A202453.

Sequence in context: A081387 A261795 A306345 * A204127 A225174 A059895

Adjacent sequences:  A204122 A204123 A204124 * A204126 A204127 A204128

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Jan 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 18:58 EDT 2020. Contains 337344 sequences. (Running on oeis4.)