%I #15 Feb 13 2023 03:05:31
%S 1,-1,-3,-2,1,-1,11,3,-1,6,-6,-29,-4,1,1,-13,8,56,5,-1,-1,-6,71,-46,
%T -102,-6,1,0,4,8,-128,73,161,7,-1,1,-4,-76,126,322,-164,-245,-8,1,1,
%U -33,63,285,-295,-629,277,351,9,-1,-4,22,121,-256,-722,662
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(2^(i-1), 2^(j-1)) (A144464).
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
%D (For references regarding interlacing roots, see A202605.)
%e Top of the array:
%e 1, -1;
%e -3, -2, 1;
%e -1, 11, 3, -1;
%e 6, -6, -29, -4, 1;
%t f[i_, j_] := Max[Floor[i/j], Floor[j/i]];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[8]] (* 8 X 8 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 15}, {i, 1, n}]] (* A204123 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A204124 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A204123, A202605, A204016.
%K tabf,sign
%O 1,3
%A _Clark Kimberling_, Jan 11 2012