login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204013
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{3i+j-3,i+3j-3} (A204012).
3
1, -1, 1, -6, 1, 0, -10, 15, -1, -4, -8, 40, -28, 1, -16, 24, 56, -110, 45, -1, -48, 160, -72, -224, 245, -66, 1, -128, 608, -880, 120, 672, -476, 91, -1, -320, 1920, -4160, 3520, 0, -1680, 840, -120, 1, -768, 5504, -15360, 20384
OFFSET
1,4
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1....-1
1....-6....1
0....-10...15....-1
-4....-8....40....-28....1
MATHEMATICA
f[i_, j_] := Min[3 i + j - 3, 3 j + i - 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6x6 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204012 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204013 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
Sequence in context: A335245 A195402 A176402 * A127573 A351110 A137388
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 10 2012
STATUS
approved