login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203994
Symmetric matrix based on f(i,j) = (i+j)*min{i,j}, by antidiagonals.
3
1, 0, 0, -1, 1, -1, -2, 0, 0, -2, -3, -1, 1, -1, -3, -4, -2, 0, 0, -2, -4, -5, -3, -1, 1, -1, -3, -5, -6, -4, -2, 0, 0, -2, -4, -6, -7, -5, -3, -1, 1, -1, -3, -5, -7, -8, -6, -4, -2, 0, 0, -2, -4, -6, -8, -9, -7, -5, -3, -1, 1, -1, -3, -5, -7, -9
OFFSET
1,7
COMMENTS
A203994 represents the matrix M given by f(i,j) = min(i-j+1,j-i+1) for i >= 1 and j >= 1. See A203995 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1 0 -1 -2 -3
0 1 0 -1 -2
-1 0 1 0 -1
2 -1 0 1 0
MATHEMATICA
(* First program *)
f[i_, j_] := Min[i - j + 1, j - i + 1];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6 X 6 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A203994 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203995 *)
TableForm[Table[c[n], {n, 1, 10}]]
(* Second program *)
Table[Min[2*k-n, n-2*k+2], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 23 2019 *)
PROG
(PARI) for(n=1, 15, for(k=1, n, print1(min(2*k-n, n-2*k+2), ", "))) \\ G. C. Greubel, Jul 23 2019
(Magma) [Min(2*k-n, n-2*k+2): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 23 2019
(Sage) [[min(2*k-n, n-2*k+2) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 23 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> Minimum(2*k-n, n-2*k+2) ))); # G. C. Greubel, Jul 23 2019
CROSSREFS
Sequence in context: A280542 A340378 A274575 * A285725 A215889 A195022
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 09 2012
STATUS
approved