Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 04 2018 12:56:10
%S 0,-1,-1,0,1,4,6,0,-1,-12,-32,-20,0,1,32,120,140,50,0,-1,-80,-384,
%T -648,-448,-105,0,1,192,1120,2464,2520,1176,196,0,-1,-448,-3072,-8320,
%U -11264,-7920,-2688,-336,0,1,1024,8064,25920,43680
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {|i-j}, (A049581).
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
%C Also the coefficients of the detour and distance polynomials of the n-path graph P_n. - _Eric W. Weisstein_, Apr 07 2017
%C p(n,x) = (-x)^n*(x*(1 + T(n, 1+1/x)) - n*S(n-1, 2*(1+1/x)))/(2*x), with the Chebyshev polynomials S (A049310) and T (A053120). This is the rewritten formula given below in the Mathematica program by Weisstein. - _Wolfdieter Lang_, Feb 02 2018
%D (For references regarding interlacing roots, see A202605.)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DetourPolynomial.html">Detour Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistancePolynomial.html">Distance Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathGraph.html">Path Graph</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F T(n, k) = [x^k] p(n,x), with p(n,x) = Determinant(M_n - x*1_n), with the n x n matrix M_n with entries M_n(i, j) = |i-j|, for n >= 1, k = 0, 1, ..., n. For p(n,x) see a comment above and the Mathematica formulas by Weisstein.- _Wolfdieter Lang_, Feb 02 2018
%e The array T (a table if row n=0 is by convention put to 0) begins:
%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...
%e (0: 0)
%e 1: 0 -1
%e 2: -1 0 1
%e 3: 4 6 0 -1
%e 4: -12 -32 -20 0 1
%e 5: 32 120 140 50 0 -1
%e 6: -80 -384 -648 -448 -105 0 1
%e 7: 192 1120 2464 2520 1176 196 0 -1
%e 8: -448 -3072 -8320 -11264 -7920 -2688 -336 0 1
%e 9: 1024 8064 25920 43680 41184 21384 5544 540 0 -1
%e 10: -2304 -20480 -76160 -153600 -182000 -128128 -51480 -10560 -825 0 1
%e ... reformatted and extended. - _Wolfdieter Lang_, Feb 02 2018
%t (* begin*)
%t f[i_, j_] := Abs[i - j];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[6]] (* 6x6 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 12}, {i, 1, n}]] (* A049581 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A203993 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%t (* end *)
%t CoefficientList[Table[CharacteristicPolynomial[SparseArray[{i_, j_} :> Abs[i - j], n], x], {n, 10}], x] //Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)
%t CoefficientList[Table[((-x)^n (x + x ChebyshevT[2 n, Sqrt[1 + 1/(2 x)]] - n ChebyshevU[n - 1, 1 + 1/x]))/(2 x), {n, 10}], x] // Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)
%t CoefficientList[Table[1/4 (2 (-x)^n + (-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n + (n (-(-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n))/Sqrt[1 + 2 x]), {n, 10}], x] // Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)
%t CoefficientList[LinearRecurrence[{-4 - 5 x, -2 (2 + 6 x + 5 x^2), -2 x (2 + 6 x + 5 x^2), -x^3 (4 + 5 x), -x^5}, {-x, (-1 + x) (1 + x), -(2 + x) (-2 - 2 x + x^2), (-6 - 4 x + x^2) (2 + 4 x + x^2), -(4 + 6 x + x^2) (-8 - 18 x - 6 x^2 + x^3)}, 10], x] // Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)
%Y Cf. A049310, A049581, A053120, A085750 (column k=0, Det(M_n)), A166445(n-1) (alternating row sums), A202605.
%K tabl,sign,easy
%O 1,6
%A _Clark Kimberling_, Jan 09 2012