login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203952
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203949.
2
1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -6, 13, -13, 6, -1, 1, -8, 24, -34, 24, -8, 1, 1, -10, 39, -75, 75, -39, 10, -1, 1, -12, 58, -144, 195, -144, 58, -12, 1, 1, -14, 81, -250, 444, -459, 271, -89, 15, -1, 1, -16, 108, -400, 886
OFFSET
1,4
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1...-1
1...-3....1
1...-6....5....-1
1...-13...18...-8....1
1...-24...52...-40...12...-1
MATHEMATICA
t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];
f[k_] := t1[[k]];
U[n_] :=
NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
p[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}] (* A203950 *)
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
Sequence in context: A183328 A034328 A034253 * A296115 A118687 A281587
KEYWORD
tabf,sign
AUTHOR
Clark Kimberling, Jan 08 2012
STATUS
approved