The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118687 A triangular array made from polynomial coefficients of A049614. 2
 1, 1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -8, 22, -28, 17, -4, 1, -12, 54, -116, 129, -72, 16, 1, -36, 342, -1412, 2913, -3168, 1744, -384, 1, -60, 1206, -9620, 36801, -73080, 77776, -42240, 9216, 1, -252, 12726, -241172, 1883841, -7138872, 14109136, -14975232, 8119296, -1769472 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Same as an alternating sign Pascal's triangle up to row n=4. LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = coefficients of Product_{k=0..n} (1 - A049614(k)*x), with T(0, 0) = 1. EXAMPLE Triangle begins as:   1;   1, -1;   1, -2,  1;   1, -3,  3, -1;   1, -4,  6, -4,  1;   1, -8, 22,-28, 17, -4; MATHEMATICA A049614[n_]:= n!/Product[Prime[i], {i, 1, PrimePi[n]}]; Join[{{1}}, Table[CoefficientList[Product[1 - A049614[k]*x, {k, 0, n}], x], {n, 0, 12}]]//Flatten PROG (Sage) def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) ) [1]+flatten([[( product(1 - A049614(k)*x for k in (0..n)) ).series(x, n+2).list()[k] for k in (0..n+1)] for n in (0..12)]) # G. C. Greubel, Feb 05 2021 CROSSREFS Cf. A008275, A034386, A049614, A119490. Sequence in context: A034253 A203952 A296115 * A281587 A026022 A073714 Adjacent sequences:  A118684 A118685 A118686 * A118688 A118689 A118690 KEYWORD sign,tabl,less AUTHOR Roger L. Bagula, May 20 2006 EXTENSIONS Edited by G. C. Greubel, Feb 05 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:51 EDT 2021. Contains 345018 sequences. (Running on oeis4.)