OFFSET
0,5
COMMENTS
Same as an alternating sign Pascal's triangle up to row n=4.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = coefficients of Product_{k=0..n} (1 - A049614(k)*x), with T(0, 0) = 1.
EXAMPLE
Triangle begins as:
1;
1, -1;
1, -2, 1;
1, -3, 3, -1;
1, -4, 6, -4, 1;
1, -8, 22,-28, 17, -4;
MATHEMATICA
PROG
(Sage)
def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) )
[1]+flatten([[( product(1 - A049614(k)*x for k in (0..n)) ).series(x, n+2).list()[k] for k in (0..n+1)] for n in (0..12)]) # G. C. Greubel, Feb 05 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, May 20 2006
EXTENSIONS
Edited by G. C. Greubel, Feb 05 2021
STATUS
approved