login
A203908
Multiplicative with a(p^e) = abs(p-e).
4
1, 1, 2, 0, 4, 2, 6, 1, 1, 4, 10, 0, 12, 6, 8, 2, 16, 1, 18, 0, 12, 10, 22, 2, 3, 12, 0, 0, 28, 8, 30, 3, 20, 16, 24, 0, 36, 18, 24, 4, 40, 12, 42, 0, 4, 22, 46, 4, 5, 3, 32, 0, 52, 0, 40, 6, 36, 28, 58, 0, 60, 30, 6, 4, 48, 20, 66, 0, 44, 24, 70, 1, 72, 36
OFFSET
1,3
COMMENTS
Density of nonzero terms is 0.85317570460439... = Product(1 - p^-p + p^-(p+1)) where p runs over the primes. - Charles R Greathouse IV, Jan 23 2012 [corrected by Amiram Eldar, Jan 14 2023]
FORMULA
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} ((1 - 1/p^5 + 2/p^4 + 2/p^3 - 4/p^2)*(1 - p - 3*p^2 + p^3 + p^4 + 2*p^(2-2*p))/(1 - p - 3*p^2 + p^3 + p^4)) = 0.2228124152... . - Amiram Eldar, Jan 14 2023
MATHEMATICA
ar[p_, s_] := Abs[p-s]; arit[1] = 1; arit[n_] := Product[ar[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}]; Array[arit, 100] (* José María Grau Ribas, Jan 25 2012 *)
PROG
(Haskell)
a203908 n = product $ map abs $
zipWith (-) (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Dec 24 2013
CROSSREFS
Cf. A100717 (n such that a(n)=0).
Sequence in context: A319997 A153733 A083218 * A334082 A346612 A352528
KEYWORD
nonn,mult
AUTHOR
STATUS
approved