login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203683
Vandermonde sequence using x^2 + y^2 applied to (1,2,4,...,2^(n-1)).
3
1, 5, 1700, 601120000, 3496121614336000000, 5335507266769461885009920000000000, 34161019296423817239835748940949012820787200000000000000
OFFSET
1,2
COMMENTS
See A093883 for a discussion and guide to related sequences.
LINKS
FORMULA
a(n) = product(((5*4^(k*(k+1)))/(4^(k+1)+1))*(-4^-(k+1);4)_k, k = 1..n-1), where the q-Pochhammer symbol (c;q)_m = product(1-c*q^j, j = 0..m-1). - Todd Silvestri, Dec 15 2014
MATHEMATICA
f[j_] := 2^(j - 1); z = 12;
u[n_] := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203683 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203684 *)
a[n_Integer/; n>=1]:=Product[(5 4^(k (k+1)))/(4^(k+1)+1) QPochhammer[-4^-(k+1), 4, k], {k, n-1}] (* Todd Silvestri, Dec 15 2014 *)
CROSSREFS
Sequence in context: A057199 A198246 A122465 * A330057 A324265 A003733
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved