login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203641
Number of arrays of n 0..10 integers with new values introduced in order 0..10 but otherwise unconstrained.
8
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644358, 190895863, 1382847419, 10477213268, 82797679445, 680685836527, 5806124780384, 51245294979716, 466668627500968, 4371727233798927, 42000637216351225
OFFSET
1,2
COMMENTS
From Danny Rorabaugh, Mar 03 2015: (Start)
a(n) is also the number of ways of placing n labeled balls into 11 indistinguishable boxes.
a(n) is also the number of word structures of length n using an 11-ary alphabet.
(End)
LINKS
Eric Weisstein's World of Mathematics, Set Partition.
Index entries for linear recurrences with constant coefficients, signature (56, -1365, 19020, -167223, 965328, -3686255, 9133180, -13926276, 11655216, -3991680).
FORMULA
Empirical: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10).
a(n) = Sum_{k=1..11} stirling2(n,k). - Danny Rorabaugh, Mar 03 2015
G.f.: Sum_{k=1..11} Product_{j=1..k} x/(1-j*x). This confirms the empirical recurrence. - Robert Israel, Aug 08 2016
MAPLE
f:= n -> add(Stirling2(n, k), k=1..11):
map(f, [$1..100]); # Robert Israel, Aug 08 2016
PROG
(PARI) a(n) = sum(k=1, 11, stirling(n, k, 2)); \\ Michel Marcus, Mar 03 2015
CROSSREFS
Column k=10 of A203647.
Sequence in context: A287282 A287260 A287672 * A192127 A287673 A203642
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved