OFFSET
1,2
COMMENTS
From Danny Rorabaugh, Mar 03 2015: (Start)
a(n) is also the number of ways of placing n labeled balls into 11 indistinguishable boxes.
a(n) is also the number of word structures of length n using an 11-ary alphabet.
(End)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Eric Weisstein's World of Mathematics, Set Partition.
Index entries for linear recurrences with constant coefficients, signature (56, -1365, 19020, -167223, 965328, -3686255, 9133180, -13926276, 11655216, -3991680).
FORMULA
Empirical: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10).
a(n) = Sum_{k=1..11} stirling2(n,k). - Danny Rorabaugh, Mar 03 2015
G.f.: Sum_{k=1..11} Product_{j=1..k} x/(1-j*x). This confirms the empirical recurrence. - Robert Israel, Aug 08 2016
MAPLE
f:= n -> add(Stirling2(n, k), k=1..11):
map(f, [$1..100]); # Robert Israel, Aug 08 2016
PROG
(PARI) a(n) = sum(k=1, 11, stirling(n, k, 2)); \\ Michel Marcus, Mar 03 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved