login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A203418(n+1)/A203418(n).
4

%I #12 Feb 24 2024 11:03:45

%S 2,8,15,48,1152,19200,62370,322560,17418240,567705600,2481078600,

%T 16907304960,1504935936000,8799558768000,76435881984000,

%U 819678899239200,10176845001523200,2169274855587840000,215013524533936128000

%N a(n) = A203418(n+1)/A203418(n).

%H G. C. Greubel, <a href="/A203419/b203419.txt">Table of n, a(n) for n = 1..350</a>

%t composite = Select[Range[100], CompositeQ]; (* A002808 *)

%t z = 20;

%t f[j_]:= composite[[j]];

%t v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];

%t d[n_]:= Product[(i-1)!, {i, 1, n}];

%t Table[v[n], {n,z}] (* A203418 *)

%t Table[v[n+1]/v[n], {n,z}] (* this sequence *)

%t Table[v[n]/d[n], {n,z}] (* A203420 *)

%o (Magma)

%o A002808:=[n: n in [2..250] | not IsPrime(n)];

%o a:= func< n | (&*[A002808[n+1] - A002808[j+1]: j in [0..n-1]]) >;

%o [a(n): n in [1..40]]; // _G. C. Greubel_, Feb 24 2024

%o (SageMath)

%o A002808=[n for n in (2..250) if not is_prime(n)]

%o def a(n): return product(A002808[n] - A002808[j] for j in range(n))

%o [a(n) for n in range(1,41)] # _G. C. Greubel_, Feb 24 2024

%Y Cf. A000040, A002808, A003418, A203418, A203420.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 02 2012