login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A203231
(n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,1,3,1,3,1,3,1,...).
2
1, 4, 15, 24, 81, 108, 351, 432, 1377, 1620, 5103, 5832, 18225, 20412, 63423, 69984, 216513, 236196, 728271, 787320, 2421009, 2598156, 7971615, 8503056, 26040609, 27634932, 84499119, 89282088, 272629233, 286978140, 875283327, 918330048
OFFSET
1,2
FORMULA
Conjecture: a(n) = 6*a(n-2)-9*a(n-4) with G.f. x*(1+4*x+9*x^2) / (-1+3*x^2)^2 . - R. J. Mathar, Oct 15 2013
MATHEMATICA
r = {3, 1, 3, 1, 3, 1};
s = Flatten[{r, r, r, r, r, r, r, r, r}];
t[n_] := Part[s, Range[n]]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 32}] (* A203231 *)
CROSSREFS
Cf. A010684, A203230, A120908 (bisection).
Sequence in context: A054308 A051531 A062835 * A171788 A063129 A061873
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 30 2011
STATUS
approved