login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203197
(n-1)-st elementary symmetric function of the first n terms of (1,3,9,27,...)=A000244.
1
1, 4, 39, 1080, 88209, 21493836, 15683355351, 34309958505840, 225130514549271201, 4431394012508602048404, 261672339357326993189906439, 46354644349343413982791427120040, 24634789450813795903041020740742981169
OFFSET
1,2
FORMULA
a(n) = (1/2)*(3-1/3^(n-1))*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017
MATHEMATICA
f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A203197 *)
Table[1/2 (3 - 1/3^(n-1)) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
CROSSREFS
Cf. A000244, A003462 (1st symm. func.), A203243 (2nd symm. func.).
Sequence in context: A348118 A341473 A086217 * A094156 A266859 A049475
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 30 2011
STATUS
approved