login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203148 (n-1)-st elementary symmetric function of {3,9,...,3^n}. 4
1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From R. J. Mathar, Oct 01 2016: (Start)

The k-th elementary symmetric functions of the integers 3^j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:

  1;

  1   3;

  1  12    27;

  1  39   351    729;

  1 120  3510  29160   59049;

  1 363 32670 882090 7144929 14348907;

which is the row-reversed version of A173007. This here is the first subdiagonal. The diagonal seems to be A047656. The first column is A029858. (End)

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..60

FORMULA

a(n) = (1/2)*(3^n-1)*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017

MATHEMATICA

f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}];

a[n_]:= SymmetricPolynomial[n - 1, t[n]];

Table[a[n], {n, 1, 16}] (* A203148 *)

Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)

PROG

(Sage) [(1/2)*(3^n -1)*3^(binomial(n, 2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021

(Magma) [(1/2)*(3^n -1)*3^(Binomial(n, 2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021

CROSSREFS

Cf. A203149.

Cf. A029858, A047656, A173007.

Sequence in context: A209425 A171206 A219407 * A120813 A202926 A134800

Adjacent sequences:  A203145 A203146 A203147 * A203149 A203150 A203151

KEYWORD

nonn

AUTHOR

Clark Kimberling, Dec 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)