The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203148 (n-1)-st elementary symmetric function of {3,9,...,3^n}. 4
 1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From R. J. Mathar, Oct 01 2016: (Start) The k-th elementary symmetric functions of the integers 3^j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0: 1; 1 3; 1 12 27; 1 39 351 729; 1 120 3510 29160 59049; 1 363 32670 882090 7144929 14348907; which is the row-reversed version of A173007. This here is the first subdiagonal. The diagonal seems to be A047656. The first column is A029858. (End) LINKS G. C. Greubel, Table of n, a(n) for n = 1..60 FORMULA a(n) = (1/2)*(3^n-1)*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017 MATHEMATICA f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}]; a[n_]:= SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* A203148 *) Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *) PROG (Sage) [(1/2)*(3^n -1)*3^(binomial(n, 2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021 (Magma) [(1/2)*(3^n -1)*3^(Binomial(n, 2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021 CROSSREFS Cf. A203149. Cf. A029858, A047656, A173007. Sequence in context: A209425 A171206 A219407 * A120813 A202926 A134800 Adjacent sequences: A203145 A203146 A203147 * A203149 A203150 A203151 KEYWORD nonn AUTHOR Clark Kimberling, Dec 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 09:38 EDT 2024. Contains 374472 sequences. (Running on oeis4.)