login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203077
Alternating-parity rearrangement of natural numbers: a(n) is the smallest number such that a(n-1)^2 + a(n)^2 is odd and composite.
0
1, 8, 9, 2, 11, 10, 5, 12, 3, 4, 7, 6, 13, 14, 17, 16, 15, 18, 19, 22, 21, 20, 25, 30, 27, 24, 23, 26, 29, 28, 31, 32, 35, 38, 33, 34, 37, 36, 39, 42, 41, 40, 45, 44, 43, 46, 47, 50, 49, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 62, 61, 66, 67, 64, 65
OFFSET
1,2
COMMENTS
The maximum between a(n) and the n-th integer appears to be +-6. In the first 10k terms, the distribution of differences, from -6 to 6 is: 27, 140, 1350, 7002, 1282, 168, 31. Therefore I conjecture that Lim_{n->infinity} a(n) = n.
EXAMPLE
1^2 + 8^2 = 65 composite, 8^2 + 9^2 = 145 composite, 9^2 + 2^2 = 85 composite.
MATHEMATICA
f[s_List] := Block[{k = If[ OddQ[ s[[-1]]], 2, 3], m = s[[-1]]}, While[a = k^2 + m^2; MemberQ[s, k] || PrimeQ[a] || EvenQ[a], k += 2]; Append[s, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jan 02 2012 *)
CROSSREFS
Cf. A203069.
Sequence in context: A202623 A266261 A117914 * A339800 A197392 A021922
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 29 2011
STATUS
approved