login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202934
Number of (n+3) X 6 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
1
104976, 153874, 225858, 330853, 481798, 695114, 991196, 1394929, 1936228, 2650602, 3579742, 4772133, 6283690, 8178418, 10529096, 13417985, 16937560, 21191266, 26294298, 32374405, 39572718, 48044602, 57960532, 69506993, 82887404
OFFSET
1,1
COMMENTS
Column 3 of A202939.
LINKS
FORMULA
Empirical: a(n) = (1/30)*n^6 + (16/5)*n^5 + (875/12)*n^4 + (2116/3)*n^3 + (103801/20)*n^2 + (407932/15)*n + 71809.
Conjectures from Colin Barker, Jun 03 2018: (Start)
G.f.: x*(104976 - 580958*x + 1353236*x^2 - 1692959*x^3 + 1197415*x^4 - 453495*x^5 + 71809*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=2:
..0..0..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..1..1....0..0..1..0..1..0....0..0..1..1..0..0....0..0..0..1..0..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..1..1..0..1....0..0..1..0..1..0
..0..0..1..0..1..0....0..0..1..1..1..1....0..0..1..0..0..1....0..0..1..0..0..0
..0..0..1..0..1..1....0..0..1..1..1..0....0..0..0..0..1..0....0..0..0..1..1..0
CROSSREFS
Cf. A202939.
Sequence in context: A186877 A304283 A138165 * A203822 A013889 A353553
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2011
STATUS
approved