

A138165


Prime numbers that contain each of the digits 0,1,4,6,8,9 exactly once.


2



104869, 108649, 140689, 140869, 148609, 164089, 164809, 168409, 184609, 186049, 401689, 406981, 408169, 408691, 409861, 416089, 418069, 460189, 460891, 460981, 468019, 468109, 469801, 480169, 486091, 489061, 498061, 601849, 604189, 604819
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 66 terms. Each product 2*3*5*7*a(n) is a squarefree number whose prime factorization (ignoring exponents) contains exactly one of each decimal digit, so each product is a term of A058909. (The primes 2,3,5,7 are the only singledigit primes in base 10.)


LINKS



MATHEMATICA

Select[Prime[Range[10000, 50000]], SequenceCount[DigitCount[#], {1, _, _, 1, _, 1, _, 1, 1, 1}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 07 2020 *)


CROSSREFS



KEYWORD

base,easy,fini,full,nonn


AUTHOR



STATUS

approved



