login
A202630
G.f.: exp( Sum_{n>=1} (3^n + A(x))^n * x^n/n ).
3
1, 4, 62, 7646, 11346032, 173032723944, 25223251091617644, 34295314615208803660344, 429734276354140075492905291038, 49292144933883713910495181570024546094, 51546480948489890934875222750204184228031911158
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 4*x + 62*x^2 + 7646*x^3 + 11346032*x^4 + 173032723944*x^5 +...
where
log(A(x)) = (3 + A(x))*x + (3^2 + A(x))^2*x^2/2 + (3^3 + A(x))^3*x^3/3 + (3^4 + A(x))^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (3^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2011
STATUS
approved