Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 27 2020 14:56:58
%S 2,3,2,3,1,3,3,8,2,5,5,5,1,8,1,6,2,2,8,9,5,5,2,5,4,6,6,8,0,9,0,5,4,6,
%T 9,9,6,0,0,6,5,5,4,0,3,7,2,9,1,0,6,2,4,0,8,2,6,5,4,5,6,7,1,7,8,1,0,2,
%U 2,7,8,1,9,9,3,8,2,6,8,1,7,5,3,4,2,0,8,9,8,2,1,8,5,6,9,6,8,3,6
%N Decimal expansion of x satisfying x = e^(-2*Pi*x).
%C See A202348 for a guide to related sequences. The Mathematica program includes a graph.
%H Alois P. Heinz, <a href="/A202495/b202495.txt">Table of n, a(n) for n = 0..10000</a>
%F Equals LambertW(2*Pi)/(2*Pi). - _Alois P. Heinz_, Feb 26 2020
%e x=0.232313382555181622895525466809054699600655...
%p evalf(LambertW(2*Pi)/(2*Pi), 145); # _Alois P. Heinz_, Feb 26 2020
%t u = -2*Pi; v = 0;
%t f[x_] := x; g[x_] := E^(u*x + v)
%t Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
%t RealDigits[r] (* A202357 *)
%t RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *)
%Y Cf. A000796, A001113, A202348.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Dec 20 2011