login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202495
Decimal expansion of x satisfying x = e^(-2*Pi*x).
3
2, 3, 2, 3, 1, 3, 3, 8, 2, 5, 5, 5, 1, 8, 1, 6, 2, 2, 8, 9, 5, 5, 2, 5, 4, 6, 6, 8, 0, 9, 0, 5, 4, 6, 9, 9, 6, 0, 0, 6, 5, 5, 4, 0, 3, 7, 2, 9, 1, 0, 6, 2, 4, 0, 8, 2, 6, 5, 4, 5, 6, 7, 1, 7, 8, 1, 0, 2, 2, 7, 8, 1, 9, 9, 3, 8, 2, 6, 8, 1, 7, 5, 3, 4, 2, 0, 8, 9, 8, 2, 1, 8, 5, 6, 9, 6, 8, 3, 6
OFFSET
0,1
COMMENTS
See A202348 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
FORMULA
Equals LambertW(2*Pi)/(2*Pi). - Alois P. Heinz, Feb 26 2020
EXAMPLE
x=0.232313382555181622895525466809054699600655...
MAPLE
evalf(LambertW(2*Pi)/(2*Pi), 145); # Alois P. Heinz, Feb 26 2020
MATHEMATICA
u = -2*Pi; v = 0;
f[x_] := x; g[x_] := E^(u*x + v)
Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
RealDigits[r] (* A202357 *)
RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 20 2011
STATUS
approved