login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
4

%I #10 Feb 22 2013 14:40:24

%S 1,1,1,1,3,2,1,6,8,3,1,10,21,17,5,1,15,45,58,35,8,1,21,85,154,144,68,

%T 13,1,28,147,350,452,330,129,21,1,36,238,714,1195,1198,719,239,34,1,

%U 45,366,1344,2799,3611,2959,1506,436,55

%N Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

%C T(n,n) = Fibonacci(n+1) = A000045(n+1).

%C A202390 is jointly generated with A208340 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=(x+1)*u(n-1,x)+(x+1)v(n-1,x). The alternating row sums of A202390, and also A208340, are 0 except for the first one. See the Mathematica section. [From Clark Kimberling, Feb 27 2012]

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if n<k.

%F G.f.: (1-x)/(1-(2+y)*x+(1-y^2)*x^2).

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A108411(n), A000007(n), A000012(n), A025192(n), A122558(n) for x = -2, -1, 0, 1, 2 respectively.

%e Triangle begins :

%e 1

%e 1, 1

%e 1, 3, 2

%e 1, 6, 8, 3

%e 1, 10, 21, 17, 5

%e 1, 15, 45, 58, 35, 8

%e 1, 21, 85, 154, 144, 68, 13

%e 1, 28, 147, 350, 452, 330, 129, 21

%t u[1, x_] := 1; v[1, x_] := 1; z = 13;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A202390 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208340 *)

%t Table[u[n, x] /. x -> 1, {n, 1, z}] (*row sums*)

%t Table[u[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)

%Y Cf. A000012, A000217, A051744, A000045, A123585, A208340.

%K nonn,tabl

%O 0,5

%A _Philippe Deléham_, Dec 18 2011