login
A202194
Number of (n+2)X(n+2) binary arrays avoiding patterns 001 and 101 in rows and columns
1
108, 640, 3500, 18144, 90552, 439296, 2084940, 9724000, 44710952, 203164416, 914004728, 4077035200, 18052470000, 79420170240, 347424465420, 1512176830560, 6552247686600, 28276211040000, 121580638419240, 521033622457920
OFFSET
1,1
COMMENTS
Diagonal of A202202
LINKS
FORMULA
Empirical: (n+1)*a(n) -2*(3n+4)*a(n-1) +4*(3n-2)*a(n-2) +8*(3-2n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
Conjecture: a(n) = 4*(n+2)^2 * (2*n+1)!/(n! * (n+1)!). - Michael Somos, Sep 11 2020
EXAMPLE
Some solutions for n=3
..0..1..1..0..0....1..1..0..0..0....0..1..1..1..1....0..1..1..1..0
..1..1..1..1..1....0..1..1..1..0....1..1..1..1..1....1..1..1..1..1
..0..1..1..1..1....0..1..1..0..0....1..1..1..1..1....0..1..1..1..0
..0..1..0..0..0....0..1..1..0..0....1..1..1..0..0....0..1..0..0..0
..0..1..0..0..0....0..1..0..0..0....1..1..0..0..0....0..0..0..0..0
PROG
(PARI) {a(n) = if(n<1, 0, 4*(n+2)^2 * (2*n+1)!/(n! * (n+1)!))}; /* Michael Somos, Sep 11 2020 */
CROSSREFS
Sequence in context: A129027 A288706 A204276 * A333757 A203373 A292343
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 14 2011
STATUS
approved