|
|
A201716
|
|
Primes of the form 3*m^2 - 4.
|
|
6
|
|
|
23, 71, 239, 359, 503, 863, 1319, 1583, 1871, 2879, 3671, 5039, 8423, 9743, 11159, 11903, 12671, 13463, 16871, 17783, 18719, 20663, 25943, 29399, 33071, 38303, 39671, 48383, 49919, 51479, 61343, 68399, 70223, 73943, 81671, 83663, 87719
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes p such that 3*(p+4) or (p+4)/3 is a square. - Vincenzo Librandi, Dec 05 2015, Feb 16 2016
|
|
LINKS
|
|
|
EXAMPLE
|
23 is in the sequence because 3 * 3^2 - 4 = 27 - 4 = 23.
71 = 3 * 5^2 - 4.
143 is not in the sequence, because 3 * 7^2 - 4 = 143 but 11 * 13 = 143.
|
|
MAPLE
|
select(isprime, [seq(3*(2*k+1)^2-4, k = 1..1000)]); # Robert Israel, Nov 09 2014
|
|
MATHEMATICA
|
Select[Table[3n^2 - 4, {n, 1000}], PrimeQ]
|
|
PROG
|
(Magma) [a: n in [1..300] | IsPrime(a) where a is 3*n^2-4];
(PARI) lista(nn) = for (k=0, nn, if (isprime(p=3*k^2-4), print1(p, ", "))); \\ Michel Marcus, Nov 19 2014, Feb 16 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|