The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201660 Decimal expansion of least x satisfying 10*x^2 = csc(x) and 0 < x < Pi. 3
 4, 6, 9, 9, 3, 1, 6, 0, 6, 0, 0, 0, 5, 8, 8, 9, 2, 2, 8, 6, 8, 6, 5, 3, 5, 3, 5, 0, 6, 1, 8, 9, 1, 3, 0, 6, 3, 8, 8, 3, 0, 0, 1, 3, 8, 0, 3, 5, 1, 8, 7, 1, 7, 7, 1, 9, 5, 5, 5, 3, 2, 2, 0, 6, 5, 8, 3, 1, 9, 3, 9, 2, 9, 8, 6, 4, 9, 6, 1, 7, 2, 5, 3, 0, 5, 5, 7, 6, 3, 7, 7, 6, 3, 2, 6, 7, 3, 4, 0, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A201564 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least:  0.469931606000588922868653535061891306388300... greatest:  3.131394253920689935444028622238747025122... MATHEMATICA f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r]    (* A201660 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r]     (* A201662 *) PROG (PARI) a=10; c=0; solve(x=0.4, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018 CROSSREFS Cf. A201564. Sequence in context: A084335 A277893 A197575 * A341577 A094115 A339856 Adjacent sequences:  A201657 A201658 A201659 * A201661 A201662 A201663 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 04 2011 EXTENSIONS Terms a(90) onward corrected by G. C. Greubel, Sep 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 00:57 EDT 2021. Contains 346346 sequences. (Running on oeis4.)