login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201645
G.f.: x/sqrt(1 + x^2 - 2*x*sqrt(1 + 4*x^2)).
1
1, 1, 1, 3, 7, 11, 21, 53, 113, 211, 451, 1049, 2223, 4517, 9881, 22203, 47531, 100531, 220933, 489737, 1059137, 2284401, 5025959, 11088703, 24161133, 52644061, 115913011, 255469863, 559494883, 1226060651, 2702052381, 5957474213, 13092891293, 28792397139, 63518607791, 140165690233
OFFSET
1,4
LINKS
FORMULA
G.f. satisfies: A(-A(-x)) = x.
G.f.: A(x) = x/sqrt((1-x)^2 - 4*x^3*C(-x^2)) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
Let A^{n}(x) denote the n-th iteration of A(x), then:
(1) A^{n}(x) = x/sqrt(1 + n^2*x^2 - 2*n*x*sqrt(1 + 4*x^2));
(2) A^{n}(x) = x/sqrt(1-4*x^2) o x/(1-n*x) o x/sqrt(1+4*x^2), a composition of functions involving a g.f. of the central binomial coefficients (A000984) and its inverse.
a(n) ~ sqrt(3)*5^(n/2-1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence -(6*n-17)*(n-1)*(n-2)*a(n) +2*(-6*n^3+65*n^2-171*n+91)*a(n-2) +(n-4)*(138*n^2-625*n+545)*a(n-4) +60*(6*n-5)*(n-6)*(n-4)*a(n-6)=0. - R. J. Mathar, Nov 22 2024
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 21*x^7 + 53*x^8 +...
where x^2/A(x)^2 = 1 - 2*x + x^2 - 4*x^3 + 4*x^5 - 8*x^7 + 20*x^9 - 56*x^11 + 168*x^13 -+... + (-1)^n*4*A000108(n)*x^(n+3) +...
The initial iterations of A(x) begin:
A(A(x)) = x + 2*x^2 + 4*x^3 + 12*x^4 + 40*x^5 + 124*x^6 + 384*x^7 +...,
A(A(x)) = x/sqrt(1 + 4*x^2 - 4*x*sqrt(1 + 4*x^2));
A(A(A(x))) = x + 3*x^2 + 9*x^3 + 33*x^4 + 135*x^5 + 561*x^6 + 2349*x^7 +...,
A(A(A(x))) = x/sqrt(1 + 9*x^2 - 6*x*sqrt(1 + 4*x^2));
A(A(A(A(x)))) = x + 4*x^2 + 16*x^3 + 72*x^4 + 352*x^5 + 1784*x^6 +...,
A(A(A(A(x)))) = x/sqrt(1 + 16*x^2 - 8*x*sqrt(1 + 4*x^2)).
Related expansion:
x/sqrt(1-4*x^2) = x + 2*x^3 + 6*x^5 + 20*x^7 + 70*x^9 + 252*x^11 +...+ A000984(n)*x^n +...
MATHEMATICA
Rest[CoefficientList[Series[x/Sqrt[1 + x^2 - 2*x*Sqrt[1 + 4*x^2]], {x, 0, 50}], x]] (* G. C. Greubel, May 27 2017 *)
PROG
(PARI) {a(n)=polcoeff(x/sqrt(1 + x^2 - 2*x*sqrt(1 + 4*x^2 +x*O(x^n))), n)}
CROSSREFS
Cf. A000984.
Sequence in context: A067498 A018345 A082675 * A028831 A244572 A137516
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 03 2011
STATUS
approved