login
A201520
Decimal expansion of greatest x satisfying 5*x^2 - 1 = sec(x) and 0 < x < Pi.
3
1, 4, 6, 8, 3, 7, 4, 2, 9, 2, 0, 3, 3, 2, 8, 2, 9, 3, 7, 6, 5, 5, 4, 6, 8, 7, 8, 1, 5, 8, 0, 5, 4, 6, 6, 9, 4, 6, 9, 2, 0, 5, 9, 7, 4, 2, 8, 6, 1, 4, 1, 7, 5, 6, 0, 3, 2, 9, 3, 8, 4, 9, 7, 7, 5, 5, 7, 5, 6, 9, 6, 9, 3, 6, 9, 2, 3, 4, 0, 7, 1, 4, 5, 9, 7, 9, 0, 3, 1, 1, 3, 5, 3, 2, 8, 4, 7, 8, 5
OFFSET
1,2
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.675482908113724228015178858190...
greatest: 1.4683742920332829376554687815...
MATHEMATICA
a = 5; c = -1;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
RealDigits[r] (* A201519 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201520 *)
CROSSREFS
Cf. A201397.
Sequence in context: A330154 A179371 A097455 * A179022 A021685 A071851
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 02 2011
STATUS
approved