login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201445
Number of n X 2 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1
6, 2, 21, 9, 56, 13, 110, 32, 198, 41, 315, 78, 480, 94, 684, 155, 950, 180, 1265, 271, 1656, 307, 2106, 434, 2646, 483, 3255, 652, 3968, 716, 4760, 933, 5670, 1014, 6669, 1285, 7800, 1385, 9030, 1716, 10406, 1837, 11891, 2234, 13536, 2378, 15300, 2847
OFFSET
1,1
COMMENTS
Column 2 of A201451.
LINKS
FORMULA
Empirical: a(n) = a(n-2) +3*a(n-4) -3*a(n-6) -3*a(n-8) +3*a(n-10) +a(n-12) -a(n-14).
Subsequences for n modulo 4 = 1,2,3,0:
p=(n+3)/4: a(n) = 8*p^3 - 2*p^2
q=(n+2)/4: a(n) = (4/3)*q^3 + (1/2)*q^2 + (1/6)*q
r=(n+1)/4: a(n) = 8*r^3 + 10*r^2 + 3*r
s=(n+0)/4: a(n) = (4/3)*s^3 + (7/2)*s^2 + (19/6)*s + 1.
Empirical g.f.: x*(6 + 2*x + 15*x^2 + 7*x^3 + 17*x^4 - 2*x^5 + 9*x^6 - 2*x^7 + x^8 + 3*x^9 + x^11 - x^13) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^3). - Colin Barker, May 23 2018
EXAMPLE
Some solutions for n=10:
..0..0....0..0....0..1....0..1....0..2....0..0....0..0....0..0....0..1....0..0
..0..1....0..1....0..1....0..1....0..2....0..1....0..1....0..0....0..1....0..1
..0..2....0..1....0..2....0..2....0..2....0..1....0..2....0..1....0..1....0..2
..0..2....0..2....0..2....0..2....0..2....0..1....0..2....1..1....0..2....0..2
..1..2....1..2....0..2....0..2....0..2....1..1....1..2....1..1....0..2....1..2
..1..2....1..2....1..2....1..3....1..3....2..2....1..3....2..2....1..2....1..2
..1..2....1..2....1..2....1..3....1..3....2..3....1..3....2..3....1..3....1..3
..1..3....2..3....1..3....1..3....1..3....2..3....1..3....2..3....2..3....1..3
..3..3....3..3....3..3....2..3....1..3....2..3....2..3....2..3....2..3....2..3
..3..3....3..3....3..3....2..3....1..3....3..3....2..3....3..3....3..3....3..3
CROSSREFS
Cf. A201451.
Sequence in context: A277275 A213503 A169632 * A090033 A036173 A142707
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 01 2011
STATUS
approved