login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 2 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1

%I #8 May 23 2018 06:37:00

%S 6,2,21,9,56,13,110,32,198,41,315,78,480,94,684,155,950,180,1265,271,

%T 1656,307,2106,434,2646,483,3255,652,3968,716,4760,933,5670,1014,6669,

%U 1285,7800,1385,9030,1716,10406,1837,11891,2234,13536,2378,15300,2847

%N Number of n X 2 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

%C Column 2 of A201451.

%H R. H. Hardin, <a href="/A201445/b201445.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-2) +3*a(n-4) -3*a(n-6) -3*a(n-8) +3*a(n-10) +a(n-12) -a(n-14).

%F Subsequences for n modulo 4 = 1,2,3,0:

%F p=(n+3)/4: a(n) = 8*p^3 - 2*p^2

%F q=(n+2)/4: a(n) = (4/3)*q^3 + (1/2)*q^2 + (1/6)*q

%F r=(n+1)/4: a(n) = 8*r^3 + 10*r^2 + 3*r

%F s=(n+0)/4: a(n) = (4/3)*s^3 + (7/2)*s^2 + (19/6)*s + 1.

%F Empirical g.f.: x*(6 + 2*x + 15*x^2 + 7*x^3 + 17*x^4 - 2*x^5 + 9*x^6 - 2*x^7 + x^8 + 3*x^9 + x^11 - x^13) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^3). - _Colin Barker_, May 23 2018

%e Some solutions for n=10:

%e ..0..0....0..0....0..1....0..1....0..2....0..0....0..0....0..0....0..1....0..0

%e ..0..1....0..1....0..1....0..1....0..2....0..1....0..1....0..0....0..1....0..1

%e ..0..2....0..1....0..2....0..2....0..2....0..1....0..2....0..1....0..1....0..2

%e ..0..2....0..2....0..2....0..2....0..2....0..1....0..2....1..1....0..2....0..2

%e ..1..2....1..2....0..2....0..2....0..2....1..1....1..2....1..1....0..2....1..2

%e ..1..2....1..2....1..2....1..3....1..3....2..2....1..3....2..2....1..2....1..2

%e ..1..2....1..2....1..2....1..3....1..3....2..3....1..3....2..3....1..3....1..3

%e ..1..3....2..3....1..3....1..3....1..3....2..3....1..3....2..3....2..3....1..3

%e ..3..3....3..3....3..3....2..3....1..3....2..3....2..3....2..3....2..3....2..3

%e ..3..3....3..3....3..3....2..3....1..3....3..3....2..3....3..3....3..3....3..3

%Y Cf. A201451.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 01 2011