

A201318


Decimal expansion of x satisfying x^29=cot(x) and 0<x<pi.


2



2, 6, 6, 1, 1, 0, 3, 4, 3, 8, 5, 8, 4, 5, 7, 3, 1, 3, 5, 5, 1, 7, 4, 2, 4, 4, 5, 0, 0, 6, 0, 0, 4, 6, 1, 1, 7, 9, 7, 2, 5, 4, 8, 7, 0, 2, 3, 2, 1, 9, 2, 5, 4, 2, 2, 6, 3, 2, 4, 5, 3, 5, 6, 2, 9, 5, 0, 0, 7, 0, 6, 8, 9, 3, 8, 0, 5, 6, 5, 2, 3, 1, 9, 8, 7, 2, 1, 3, 1, 2, 6, 5, 9, 9, 0, 5, 5, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A201280 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=2.6611034385845731355174244500600...


MATHEMATICA

a = 1; c = 9;
f[x_] := a*x^2 + c; g[x_] := Cot[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision > 110]
RealDigits[r] (* A201318 *)


CROSSREFS

Cf. A201280.
Sequence in context: A197036 A110666 A200485 * A242001 A175994 A283613
Adjacent sequences: A201315 A201316 A201317 * A201319 A201320 A201321


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 30 2011


STATUS

approved



